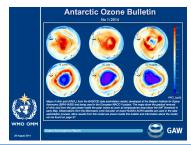


Toward a reanalysis of MLS Stratospheric Chemical Observations

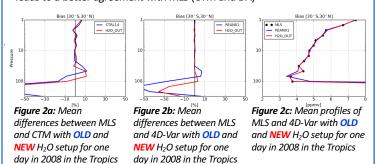


Q. Errera¹ (quentin@oma.be), G. Braathen², Y. Christophe¹, S. Chabrillat¹ and S. Skachko¹

1. Motivations

- BASCOE system provides operational analysis of the stratospheric chemical composition since 2009 using MLS scientific retrievals with a latency of 3-5 days (www.copernicus-stratosphere.eu)
- These analyses are used by WMO Global Atmosphere Watch (GAW) to produce the Arctic and Antarctic Ozone Bulletin
- BASCOE analyses are provided as 6-hourly snapshot and are:
 - easier to interpret the global state of the stratosphere than MLS profiles
 - more accurate than free model output
- A reanalysis of MLS between 2004-present will allow GAW to evaluate more easily the evolution of the polar stratosphere since 2004

Figure 1: Illustration of use of BASCOE analyses of MLS for the production of the WMO GAW Antarctic Ozone Bulletin. Here is shown the cover page of the 1st bulletin of 2014.


2. Experimental setup

All numerical experiments descibed here have been done with the Belgian Assimilation System for Chemical Observations (BASCOE; Errera et al., ACP, 2008; Skachko et al., GMD, 2016)

- Chemitry Transport Model:
 - 58 stratospheric species advected by the Flux Form Semi Lagrangian (Lin and Rood, MWR, 1996)
 - ~200 chemical reactions (gas-phase, photolysis and heterogeneous)
 - PSC Parameterization of their formation/evaporation, sedimentation and heterogeneous reactions rates on their surface (see box 4)
 - Resolution: 2.5°lat x 3.75°lon x 37 levels between 0.1 hPa surface
 - Time step: 30'
 - Dynamical fields: ERA-Interim
- Data Assimilation:
- Method: 4D-Var (Errera et al., ACP, 2008, 2012) or EnKF (Skachko et al., GMD, 2014, 2016). See box 5
- 4D-Var ${\bf B}$ matrix assume homogeneous and isotropic spatial Gaussian correlations with length scales L_h =800 km and L_v =1 vertical level
- Observations: Aura MLS v4.2 profiles of O₃, H₂O, HNO₃, N₂O, HCl, ClO and CO according to the Data Quality Document recommendations
- Period of interest: April-November 2008

3. New H₂O setup at the UTLS

- Old setup used ERA-Interim between surface-2 km above tropopause
- BASCOE CTM includes a new setup to account for H₂O condensation which leads to a better agreement with MLS (CTM and DA)

Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

²WMO, Geneva, Switzerland

4. South Polar Winter Model simulations

Four Chemitry Transport Model (CTM) simulations:

CTM 1: PSC existance as a function of T°. PSC sedimentation assume exponential decay (Errera et al., ACP, 2008):

VMR_{HNO3}=VMR_{HNO3}*EXP(-9days* Δt) If T<186K:

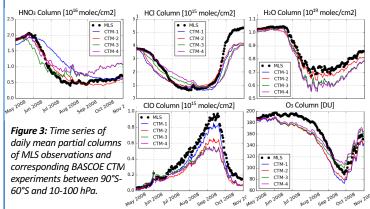
 $VMR_{H2O} = VMR_{H2O} * EXP(-9 days * \Delta t)$

ICE exist with SAD=106 cm2/cm3

Else If T<194K: VMR_{HNO3}=VMR_{HNO3}*EXP(-100days* Δt)

NAT exist with SAD=107 cm2/cm3

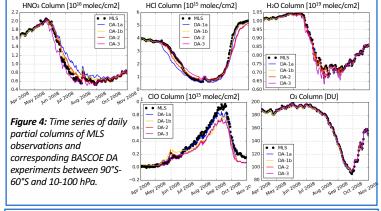
CTM 2: PSC existance as a function of condensation pressure. PSC sedimentation assume exponential decay (Huijnen et al., GMD, 2016, in press):


 $VMR_{HNO3}=VMR_{HNO3}*EXP(-9days* \Delta t)$ If $p_{H2O} > p_{ICE}$:

 $VMR_{H2O} = VMR_{H2O} * EXP(-9 days * \Delta t)$ ICE exist with SAD=106 cm2/cm3

Else If p_{HNO3}>p_{NAT}: VMR_{HNO3}=VMR_{HNO3}*EXP(-20days* Δt)

NAT exist with SAD=10⁷ cm²/cm³


- CTM 3: REPROBUS PSC parameterization (Lefèvre et al., JGR, 1994)
- CTM 4: As CTM 3 where NAT formation is slowed down

5. South Polar Winter Data Assimilation Experiments

Four DA simulations:

- DA 1a: 4D-Var with PSC setup as in CTM 1
- DA 1b: EnKF with PSC setup as in CTM 1
- DA 2: 4D-Var with PSC setup as in CTM 2
- DA 3: 4D-Var with PSC setup as in CTM 4

6. Conclusions

- None of PSC parameterizations used in CTM or DA agree completely with
- Complex PSC parameterization (e.g. Reprobus) are not necessarily better than simple one
- EnKF seems to perform better than 4D-Var
- Work in progress